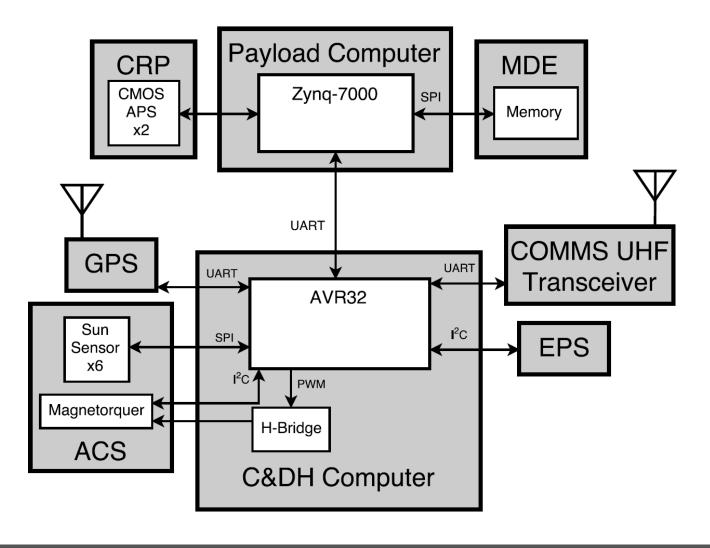


EagleSat 2: On-Board Computer Subsystem David Stockhouse

Arizona Space Grant Symposium April 14, 2018

Overview



- System-level description of satellite
- Computational needs for each subsystem
- On-board computer subsystem architecture
- In-depth look at payload prototypes
- Next Steps

System-Level Description

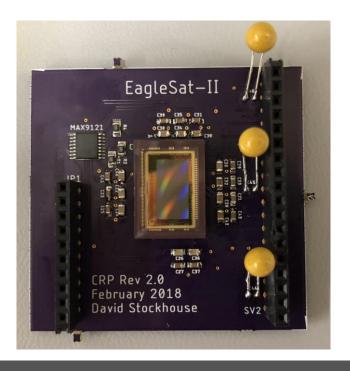
Computational Needs – Bus Systems

- Communications Command reception and data transmission
- EPS Power monitoring
- ACS Attitude telemetry and control
- GPS Position telemetry

Computational Needs – Payloads

- Cosmic Ray Payload (CRP)
 - Interfacing with CMOS image sensor
 - Image processing to determine energy and trajectory of particle events observed
- Memory Degradation Experiment (MDE)
 - Interfacing with several SPI memory chips
 - Identifying and characterizing memory errors

OBC Subsystem Architecture


- Two separate computer systems
- Payload Computer
 - Interfaces to payload hardware and processes data
 - Will be designed and built in-house based on Zynq-7000 SoC
- Command and Data Handling Computer
 - Interfaces to other subsystems and status telemetry instruments
 - Commercial off the shelf GOMSpace Nanomind A3200

Payload Prototype – CRP

- Developed on Avnet Zedboard
 - Zynq-7000 contains both ARM processor system and FPGA programmable logic
 - Xillybus interface between processor and FPGA
 - Xillinux Linux distribution with application code on processor system
 - FPGA design integrated with Xillybus IP
- Uses CMV2000 CMOS image sensor
 - Breakout board designed in-house
 - Complete system design and testing is ongoing

Payload Prototype – MDE

- Developed on Texas Instruments TM4C123GXL
- Memory board developed in-house
- Testing ongoing since February

Next Steps

- Miniaturizing CRP prototype
- High altitude balloon test flight
- Payload prototypes on fully custom PCBs
- More capable flight hardware

Acknowledgements

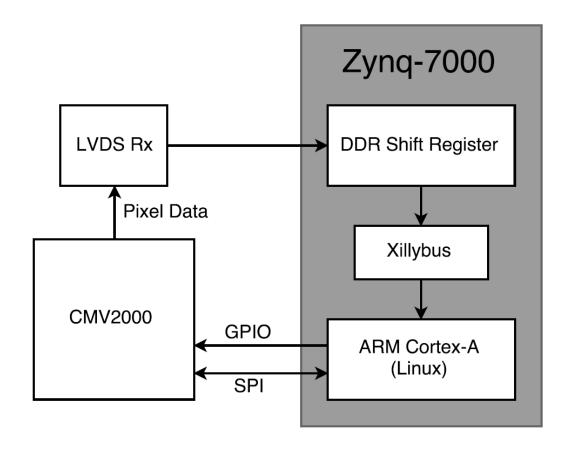
Embry-Riddle College of Engineering NASA Space Grant

Dr. Gary Yale – Faculty Supervisor

Dr. Brian Davis

Dr. Akhan Almagambetov

Thank You


David Stockhouse EagleSat 2 On-Board Computer Lead stockhod@my.erau.edu

Questions?

Backup Slide

CRP Prototype Block Diagram

